Platelet-derived growth factor/vascular endothelial growth factor receptor inactivation by sunitinib results in Tsc1/Tsc2-dependent inhibition of TORC1.

نویسندگان

  • Tram Anh Tran
  • Lisa Kinch
  • Samuel Peña-Llopis
  • Lutz Kockel
  • Nick Grishin
  • Huaqi Jiang
  • James Brugarolas
چکیده

Vascular endothelial growth factor (VEGF) and platelet-derived growth factor (PDGF) receptors are implicated in development and tumorigenesis and dual inhibitors like sunitinib are prescribed for cancer treatment. While mammalian VEGF and PDGF receptors are present in multiple isoforms and heterodimers, Drosophila encodes one ancestral PDGF/VEGF receptor, PVR. We identified PVR in an unbiased cell-based RNA interference (RNAi) screen of all Drosophila kinases and phosphatases for novel regulators of TORC1. PVR is essential to sustain target of rapamycin complex 1 (TORC1) and extracellular signal-regulated kinase (ERK) activity in cultured insect cells and for maximal stimulation by insulin. CG32406 (henceforth, PVRAP, for PVR adaptor protein), an Src homology 2 (SH2) domain-containing protein, binds PVR and is required for TORC1 activation. TORC1 activation by PVR involves Tsc1/Tsc2 and, in a cell-type-dependent manner, Lobe (ortholog of PRAS40). PVR is required for cell survival in vitro, and both PVR and TORC1 are necessary for hemocyte expansion in vivo. Constitutive PVR activation induces tumor-like structures that exhibit high TORC1 activity. Like its mammalian orthologs, PVR is inhibited by sunitinib, and sunitinib treatment phenocopies PVR loss in hemocytes. Sunitinib inhibits TORC1 in insect cells, and sunitinib-mediated TORC1 inhibition requires an intact Tsc1/Tsc2 complex. Sunitinib similarly inhibited TORC1 in human endothelial cells in a Tsc1/Tsc2-dependent manner. Our findings provide insight into the mechanism of action of PVR and may have implications for understanding sunitinib sensitivity and resistance in tumors.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pazopanib for the treatment of soft-tissue sarcoma

Pazopanib is a multikinase inhibitor which potently inhibits the activity of major receptor tyrosine kinases, including vascular endothelial growth factor receptor-1, vascular endothelial growth factor receptor-2, vascular endothelial growth factor receptor-3, platelet-derived growth factor receptor-a, platelet-derived growth factor receptor-a, and c-Kit. Approved by the Food and Drug Administr...

متن کامل

Safety and Efficacy of Sunitinib in Patients with Unresectable Pancreatic Neuroendocrine Tumors

Pancreatic neuroendocrine tumors (PNETs) are becoming increasingly common, with the majority of patients presenting with either lymph node involvement or metastatic disease, thus requiring systemic therapy. Targeted therapy is a type of medication that blocks the growth of cancer cells by interfering with specific targeted molecules needed for carcinogenesis and tumor growth rather than by simp...

متن کامل

Fibroblast Growth Factor Receptor-Dependent and -Independent Paracrine Signaling by Sunitinib-Resistant Renal Cell Carcinoma.

Antiangiogenic therapies, such as sunitinib, have revolutionized renal cell carcinoma (RCC) treatment. However, a precarious understanding of how resistance emerges and a lack of tractable experimental systems hinder progress. We evaluated the potential of primary RCC cultures (derived from tumors and tumor grafts) to signal to endothelial cells (EC) and fibroblasts in vitro and to stimulate an...

متن کامل

Hyperactivated mTORC1 downregulation of FOXO3a/PDGFRα/AKT cascade restrains tuberous sclerosis complex-associated tumor development

Hyperactivation of mammalian target of rapamycin complex 1 (mTORC1), caused by loss-of-function mutations in either the TSC1 or TSC2 gene, leads to the development of tuberous sclerosis complex (TSC), a benign tumor syndrome with multiple affected organs. mTORC1-mediated inhibition of AKT constrains the tumor progression of TSC, but the exact mechanisms remain unclear. Herein we showed that los...

متن کامل

Loss of Tsc1 or Tsc2 induces vascular endothelial growth factor production through mammalian target of rapamycin.

Mutation in either TSC1 or TSC2 causes the autosomal dominant disorder tuberous sclerosis, in which widespread hamartomas are seen, some of which have a high level of vascularization. Tuberous sclerosis complex (TSC) gene products negatively regulate mammalian target of rapamycin (mTOR) activity. We found that vascular endothelial growth factor (VEGF) is secreted by Tsc1- or Tsc2-null fibroblas...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular and cellular biology

دوره 33 19  شماره 

صفحات  -

تاریخ انتشار 2013